The right pressure at the right time for more patient comfort and more efficient ventilation.

Auto-TRAK algorithm

- “Noninvasive Ventilator Triggering in Chronic Obstructive Pulmonary Disease” AJRCCM 2001, Soll and Co
- “Performance Characteristics of Bilevel Pressure Ventilators” Chest 1997, Burdman and Co

AVAPS support function

- “Average volume assured pressure support in obesity hypventilation: a randomized cross-over trial” Chest 2006, Sorens and Co

AVAPS, a unique clinically proven technology

- For patients with Obesity Hypoverilation Syndrome
 “The addition of AVAPS to BPV/S/T provides beneficial physiologic improvements, resulting in a more efficient decrease of PtcCO2 compared to BPV/S/T therapy alone.”
- For patients with chest deformities
 “After switching to BiPAP-AVAPS therapy the results included an increase in average oxygen saturation, a reduction of pCO2 levels and an improved acceptance of therapy compared to previously used ventilation methods.”
- For patients with hypercapnic COPD
 “AVAPS mask ventilation has similar efficacy and produces better subjective effects on sleep as compared with PS in COPD patients with chronic hypercapnia.”

Please visit www.philips.com/respironics

Respironics, Synchrony, BiPAP, Auto-TRAK are trademarks of Respironics, Inc. and its affiliates
All rights are reserved.

© 2011 Koninklijke Philips Electronics N.V. All rights are reserved.
Philips Healthcare reserves the right to make changes in specifications and/or to discontinue any product at any time without notice or obligation and will not be liable for any consequences resulting from the use of this publication.
What is AVAPS?

AVAPS is a support function that can be activated within our S, S/T, PC and T pressure modes. It automatically adapts pressure support to patient needs to guarantee an average tidal volume.

Based on the Auto-TRAK algorithm performance, the patient’s tidal volume is estimated at each breath and compared with the target tidal volume. Inspiratory pressure increases or decreases from breath to breath to ensure the preset tidal volume. Inspiratory pressure smoothly changes (<1cmH2O/min) so as not to affect patient comfort, and to prevent any potential patient-ventilator disynchronization.

In case the patient tidal volume is far from the set target, an accelerating factor will allow the inspiratory pressure to change faster by up to 3 cmH2O/min.

Check patient arterial blood gases (PaCO2 and PaO2) and oxygen saturation (SpO2)

* Conversion table to set the target tidal volume in relation to the ideal weight:

<table>
<thead>
<tr>
<th>Height (m)</th>
<th>Calculated ideal weight (if BMI = 23)</th>
<th>Target Vte if 8 ml/kg</th>
<th>Target Vte if 10 ml/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>52.0 kg</td>
<td>410 ml</td>
<td>520 ml</td>
</tr>
<tr>
<td>1.55</td>
<td>53.0 kg</td>
<td>440 ml</td>
<td>550 ml</td>
</tr>
<tr>
<td>1.60</td>
<td>59.0 kg</td>
<td>470 ml</td>
<td>590 ml</td>
</tr>
<tr>
<td>1.65</td>
<td>62.5 kg</td>
<td>500 ml</td>
<td>620 ml</td>
</tr>
<tr>
<td>1.70</td>
<td>66.5 kg</td>
<td>530 ml</td>
<td>660 ml</td>
</tr>
<tr>
<td>1.75</td>
<td>70.5 kg</td>
<td>560 ml</td>
<td>700 ml</td>
</tr>
<tr>
<td>1.80</td>
<td>74.0 kg</td>
<td>600 ml</td>
<td>740 ml</td>
</tr>
<tr>
<td>1.85</td>
<td>78.5 kg</td>
<td>630 ml</td>
<td>780 ml</td>
</tr>
<tr>
<td>1.90</td>
<td>83.0 kg</td>
<td>660 ml</td>
<td>830 ml</td>
</tr>
</tbody>
</table>

Above data have been calculated with an ideal Body Mass Index of 23 kg/m² (BMI=weight/height²)

AVAPS suggested settings

1. Set the Target Tidal Volume
 - To 8ml/kg of the ideal weight and adjust depending on patient pathology

2. Set IPAP Limits
 - IPAP max = 25 to 50 cmH2O depending on patient condition and maximum pressure available on the machine
 - IPAP min = EPAP + 4 cmH2O depending on patient condition

Which patients?

- **Obese hypoventilation patients:** To compensate for changes in body position, averaged tidal volume ensured
- **COPD patients:** To achieve a combination of ventilation comfort and efficiency with no compromise. Get both benefits by applying “the right pressure at the right time”
- **Restrictive patients:** To provide the comfort and leak compensation of a pressure mode, and the safety of a guaranteed volume

Which benefits?

- **Make titration process easier, no IPAP adjustment needed**
- **Follow disease progression as patient’s ventilatory needs change**
- **Improve patient’s ventilation efficacy and comfort**
- **Increase safety by guaranteeing an averaged tidal volume**

Estimation of the exhaled tidal volume (Vte)

Digital Auto-TRAK algorithm combined with the BPAP system is able to quickly identify the leak by comparing the original baseline flow to the new baseline flow. Differences are recognized as leaks, and adjusted for, quickly.

Auto-TRAK algorithm estimates patient flow to provide:

- **Automatic triggers:** sensitivity remains optimal even with a change in leaks and patient’s respiratory mechanics
- **An estimation of exhaled patient tidal volume (Vte)** for ventilation monitoring and for AVAPS. Based on Auto-TRAK advanced technology, AVAPS ensures a close monitoring of Vte and adjusts IPAP to maintain a true averaged patient tidal volume.

AVAPS Settings

Digital Auto-TRAK algorithm combined with the BiPAP system is able to quickly identify the leak by comparing the original baseline flow to the new baseline flow. Differences are recognized as leaks, and adjusted for, quickly.

Auto-TRAK algorithm estimates patient flow to provide:

- **Automatic triggers:** sensitivity remains optimal even with a change in leaks and patient’s respiratory mechanics
- **An estimation of exhaled patient tidal volume (Vte)** for ventilation monitoring and for AVAPS. Based on Auto-TRAK advanced technology, AVAPS ensures a close monitoring of Vte and adjusts IPAP to maintain a true averaged patient tidal volume.
What is AVAPS?

AVAPS is a support function that can be activated within our S, S/T, PC and T pressure modes. It automatically adapts pressure support to patient needs to guarantee an average tidal volume.

Based on the Auto-TRAK algorithm performance, the patient’s tidal volume is estimated at each breath and compared with the target tidal volume. Inspiratory pressure increases or decreases from breath to breath to ensure the preset tidal volume. Inspiratory pressure smoothly changes (<1 cmH2O/min) so as not to affect patient comfort, and to prevent any potential patient-ventilator disynchronization.

In case the patient tidal volume is far from the set target, an accelerating factor will allow the inspiratory pressure to change faster by up to 3 cmH2O/min.

Check patient arterial blood gases (PaCO2 and PaO2) and oxygen saturation (SpO2).

Conversion table to set the target tidal volume in relation to the ideal weight:

<table>
<thead>
<tr>
<th>Height (m)</th>
<th>Calculated ideal weight (if BMI = 22) Kg</th>
<th>Target Vte if 8 ml/kg</th>
<th>Target Vte if 10 ml/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>52.0</td>
<td>410 ml</td>
<td>520 ml</td>
</tr>
<tr>
<td>1.55</td>
<td>55.0</td>
<td>440 ml</td>
<td>550 ml</td>
</tr>
<tr>
<td>1.60</td>
<td>59.0</td>
<td>470 ml</td>
<td>590 ml</td>
</tr>
<tr>
<td>1.65</td>
<td>62.5</td>
<td>500 ml</td>
<td>620 ml</td>
</tr>
<tr>
<td>1.70</td>
<td>66.5</td>
<td>530 ml</td>
<td>660 ml</td>
</tr>
<tr>
<td>1.75</td>
<td>70.5</td>
<td>560 ml</td>
<td>700 ml</td>
</tr>
<tr>
<td>1.80</td>
<td>74.5</td>
<td>600 ml</td>
<td>740 ml</td>
</tr>
<tr>
<td>1.85</td>
<td>78.5</td>
<td>630 ml</td>
<td>780 ml</td>
</tr>
<tr>
<td>1.90</td>
<td>83.0</td>
<td>660 ml</td>
<td>830 ml</td>
</tr>
</tbody>
</table>

Above data have been calculated with an ideal Body Mass Index of 23 kg/m² (BMI=weight/height²).

Which patients?

- Obese hypoventilation patients: To compensate for changes in body position; averaged tidal volume ensured.
- COPD patients: To achieve a combination of ventilation comfort and efficiency with no compromise. Get both benefits by applying “the right pressure at the right time.”
- Restrictive patients: To provide the comfort and leak compensation of a pressure mode, and the safety of a guaranteed volume.

Which benefits?

- Make titration process easier, no IPAP adjustment needed.
- Follow disease progression as patient’s ventilatory needs change.
- Improve patient’s ventilation efficacy and comfort.
- Increase safety by guaranteeing an averaged tidal volume.

AVAPS suggested settings

1. Set the Target Tidal Volume
 - To 8ml/kg of the ideal weight and adjust depending on patient pathology

2. Set IPAP Limits
 - IPAP max = 25 to 50 cmH2O depending on patient condition and maximum pressure available on the machine
 - IPAP min = EPAP + 4 cmH2O depending on patient condition

Estimation of the exhaled tidal volume (Vte)

Digital Auto-TRAK algorithm combined with the BPAP system is able to quickly identify the leak by comparing the original baseline flow to the new baseline flow. Differences are recognized as leaks, and adjusted for, quickly.

Auto-TRAK algorithm estimates patient flow to provide:

- Automatic triggers: sensitivity remains optimal even with a change in leaks and patient’s respiratory mechanics.
- An estimation of exhaled patient tidal volume (Vte) for ventilation monitoring and for AVAPS. Based on Auto-TRAK advanced technology, AVAPS ensures a close monitoring of Vte and adjusts IPAP to maintain a true averaged patient tidal volume.
What is AVAPS?

AVAPS is a support function that can be activated within our S, S/T, PC and T pressure modes. It automatically adapts pressure support to patient needs to guarantee an average tidal volume.

Based on the Auto-TRAK algorithm performance, the patient’s tidal volume is estimated at each breath and compared with the target tidal volume. Inspiratory pressure increases or decreases from breath to breath to ensure the preset tidal volume. Inspiratory pressure smoothly changes (<1 cmH2O/min) so as not to affect patient comfort, and to prevent any potential patient-ventilator desynchronization.

In case the patient tidal volume is far from the set target, an accelerating factor will allow the inspiratory pressure to change faster by up to 3 cmH2O/min.

Which patients?

- **Obese hypoventilation patients:** To compensate for changes in body position; averaged tidal volume ensured
- **COPD patients:** To achieve a combination of ventilation comfort and efficiency with no compromise. Get both benefits by applying “the right pressure at the right time”
- **Restrictive patients:** To provide the comfort and leak compensation of a pressure mode, and the safety of a guaranteed volume

Which benefits?

- Make titration process easier, no IPAP adjustment needed
- Follow disease progression as patient’s ventilatory needs change
- Improve patient’s ventilation efficacy and comfort
- Increase safety by guaranteeing an averaged tidal volume

AVAPS suggested settings

1. Set the Target Tidal Volume
 - To BmiKg of the ideal weight and adjust depending on patient pathology

2. Set IPAP Limits
 - IPAP max = 25 to 50 cmH2O depending on patient condition and maximum pressure available on the machine
 - IPAP min = EPAP + 4 cmH2O depending on patient condition

Check patient arterial blood gases (PaCO2 and PaO2) and oxygen saturation (SpO2)

*Conversion table to set the target tidal volume in relation to the ideal weight:

<table>
<thead>
<tr>
<th>Height (m)</th>
<th>Calculated ideal weight (if BMI = 23)</th>
<th>Target Vte if 8 ml/kg</th>
<th>Target Vte if 10 ml/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>52.0 kg</td>
<td>410 ml</td>
<td>520 ml</td>
</tr>
<tr>
<td>1.55</td>
<td>53.0 kg</td>
<td>440 ml</td>
<td>530 ml</td>
</tr>
<tr>
<td>1.60</td>
<td>59.0 kg</td>
<td>470 ml</td>
<td>590 ml</td>
</tr>
<tr>
<td>1.65</td>
<td>62.5 kg</td>
<td>500 ml</td>
<td>620 ml</td>
</tr>
<tr>
<td>1.70</td>
<td>66.5 kg</td>
<td>530 ml</td>
<td>660 ml</td>
</tr>
<tr>
<td>1.75</td>
<td>70.5 kg</td>
<td>560 ml</td>
<td>700 ml</td>
</tr>
<tr>
<td>1.80</td>
<td>74.0 kg</td>
<td>600 ml</td>
<td>740 ml</td>
</tr>
<tr>
<td>1.85</td>
<td>78.5 kg</td>
<td>630 ml</td>
<td>780 ml</td>
</tr>
<tr>
<td>1.90</td>
<td>83.0 kg</td>
<td>660 ml</td>
<td>830 ml</td>
</tr>
</tbody>
</table>

Above data have been calculated with an ideal Body Mass Index of 23 kg/m² (BMI=weight/height²).

Estimation of the exhaled tidal volume (Vte)

Digital Auto-TRAK algorithm combined with the BiPAP system is able to quickly identify the leak by comparing the original baseline flow to the new baseline flow. Differences are recognized as leaks, and adjusted for, quickly.

Auto-TRAK algorithm estimates patient flow to provide:

- **Automatic triggers:** sensitivity remains optimal even with a change in leaks and patient’s respiratory mechanics
- **An estimation of exhaled patient tidal volume (Vte)** for ventilation monitoring and for AVAPS. Based on Auto-TRAK advanced technology, AVAPS ensures a close monitoring of Vte and adjusts IPAP to maintain a true averaged patient tidal volume.
Clinical reference

Auto-TRAK algorithm

- "Performance Characteristics of 10 Home Mechanical Ventilators in Pressure-Support Mode". Chest 2005, Battisti and Co
- "Noninvasive Ventilator Triggering in Chronic Obstructive Pulmonary Disease". AJRCCM 2001, Stell and Co
- "Performance Characteristics of Bilevel Pressure Ventilators". Chest 1997, Bubertophg and Co

AVAPS support function

- "Average volume assured pressure support in obesity hypventilation: a randomized cross-over trial". Chest 2006, Starre and Co

AVAPS, a unique clinically proven technology

- For patients with Obesity Hypoventilation Syndrome

 "The addition of AVAPS to BPV/S/T provides beneficial physiologic improvement, resulting in a more efficient decrease of PtcCO2 compared to BPV/S/T therapy alone."

- For patients with chest deformities

 "After switching to BiPAP-AVAPS therapy the results included an increase in average oxygen saturation, a reduction of pCO2 levels and an improved acceptance of therapy compared to previously used ventilation methods."

- For patients with hypercapnic COPD

 "AVAPS mask ventilation has similar efficacy and produces better subjective effects on sleep as compared with PS in COPD patients with chronic hypercapnia."

AVAPS

AVAPS guide

"The right pressure at the right time for more patient comfort and more efficient ventilation"
Clinical reference

Auto-TRAK algorithm
- “Performance Characteristics of 10 Home Mechanical Ventilators in Pressure-Support Mode” Cchest 2005, Battisti and Co
- “Noninvasive Ventilator Triggering in Chronic Obstructive Pulmonary Disease” AJRCCM 2001, Stafl and Co
- “Performance Characteristics of Bi-level Pressure Ventilators” Chest 1997, Bardetophong and Co

AVAPS support function
- “Average volume assured pressure support in obesity hypoventilation: a randomized cross-over trial” Chest 2006, Starre and Co

AVAPS, a unique clinically proven technology
- For patients with Obesity Hypoventilation Syndrome
 - “The addition of AVAPS to BPV/S/T provides beneficial physiologic improvements, resulting in a more efficient decrease of PtcCO2 compared to BPV/S/T therapy alone.”
- For patients with chest deformities
 - “After switching to BiPAP-AVAPS therapy the results included an increase in average oxygen saturation, a reduction of pHCO2 levels and an improved acceptance of therapy compared to previously used ventilation methods.”
- For patients with hypercapnic COPD
 - “AVAPS mask ventilation has similar efficacy and produces better subjective effects on sleep as compared with PS in COPD patients with chronic hypercapnia.”

AVAPS guide

“The right pressure at the right time for more patient comfort and more efficient ventilation”

Please visit www.philips.com/respironics

© 2011 Koninklijke Philips Electronics N.V. All rights are reserved.